Selasa, 29 Maret 2011

Konfigurasi Hubungan Belitan Transformator 3 fasa

Konfigurasi Hubungan Belitan Transformator 3 fasa

 

Pada artikel Transformator di sini, telah dibahas mengenai klasifikasi transformator dan bagian-bagian transformator, dan kemudian diikuti dengan artikel selanjutnya tentang bagian-bagian transformator dan peralatan proteksinya di sini. Rangkaian artikel mengenai transformator dilengkapi pula dengan artikel mengenai perawatan dan pemantauan kondisi transformator saat bekerja di sini.

Sedangkan artikel kali ini akan dibahas secara umum, HANYA mengenai hubungan-hubungan belitan pada transformator 3 fasa. Dan jika anda ingin mengetahui besarnya nilai tegangan, arus dan daya pada masing-masing hubungan, anda dapat membacanya pada artikel di sini.

Transformator 3 fasa pada dasarnya merupakan Transformator 1 fase yang disusun menjadi 3 buah dan mempunyai 2 belitan, yaitu belitan primer dan belitan sekunder. Ada dua metode utama untuk menghubungkan belitan primer yaitu hubungan segitiga dan bintang (delta dan wye). Sedangkan pada belitan sekundernya dapat dihubungkan secara segitiga, bintang dan zig-zag (Delta, Wye dan Zig-zag). Ada juga hubungan dalam bentuk khusus yaitu hubungan open-delta (VV connection)

Konfigurasi Transformator 3 Fasa

Transformator hubungan segitiga-segitiga (delta-delta)


Gambar 1. Hubungan delta-delta (segitiga-segitiga).

Pada gambar 1 baik belitan primer dan sekunder dihubungkan secara delta. Belitan primer terminal 1U, 1V dan 1W dihubungkan dengan suplai tegangan 3 fasa. Sedangkan belitan sekunder terminal 2U, 2V dan 2W disambungkan dengan sisi beban. Pada hubungan Delta (segitiga) tidak ada titik netral, yang diperoleh ketiganya merupakan tegangan line ke line, yaitu L1, L2 dan L3.

Dalam hubungan delta-delta (lihat gambar 1), tegangan pada sisi primer (sisi masukan) dan sisi sekunder (sisi keluaran) adalah dalam satu fasa. Dan pada aplikasinya (lihat gambar 2), jika beban imbang dihubungkan ke saluran 1-2-3, maka hasil arus keluaran adalah sama besarnya. Hal ini menghasilkan arus line imbang dalam saluran masukan A-B-C. Seperti dalam beberapa hubungan delta, bahwa arus line adalah 1,73 kali lebih besar dari masing-masing arus Ip (arus primer) dan Is (arus sekunder) yang mengalir dalam lilitan primer dan sekunder. Power rating untuk transformator 3 fasa adalah 3 kali rating transformator tunggal.


Gambar 2. Diagram Hubungan Delta-Delta Transformator 3 Fasa Dihubungkan Pembangkit Listrik dan Beban (Load)

Transformator hubungan bintang-bintang (wye–wye)


Gambar 3. Hubungan Belitan Bintang-bintang.

Ketika transformator dihubungkan secara bintang-bintang, yang perlu diperhatikan adalah mencegah penyimpangan dari tegangan line ke netral (fase ke netral). Cara untuk mencegah menyimpangan adalah menghubungkan netral untuk primer ke netral sumber yang biasanya dengan cara ditanahkan (ground), seperti ditunjukkan pada
Gambar 4. Cara lain adalah dengan menyediakan setiap transformator dengan lilitan ke tiga, yang disebut lilitan ” tertiary”. Lilitan tertiary untuk tiga transformator dihubungkan secara delta seperti ditunjukkan pada Gambar 5, yang sering menyediakan cabang yang melalui tegangan dimana transformator dipasang. Tidak ada beda fasa antara tegangan line transmisi masukan dan keluaran (primer & sekunder) untuk transformator yang dihubungkan bintang-bintang.


Gambar 4. Hubungan bintang-bintang.


Gambar 5. Hubungan Bintang-bintang dengan belitan tertier.

Transformator hubungan segitiga-bintang (delta-wye)

Pada hubungan segitiga-bintang (delta-wye), tegangan yang melalui setiap lilitan primer adalah sama dengan tegangan line masukan. Tegangan saluran keluaran adalah sama dengan 1,73 kali tegangan sekunder yang melalui setiap transformator. Arus line pada phasa A, B dan C adalah 1,73 kali arus pada lilitan sekunder. Arus line pada fasa 1, 2 dan 3 adalah sama dengan arus pada lilitan sekunder.


Gambar 6. Hubungan Segitiga-Bintang (Delta-wye)

Hubungan delta-bintang menghasilkan beda fasa 30° antara tegangan saluran masukan dan saluran transmisi keluaran. Maka dari itu, tegangan line keluaran E12 adalah 30° mendahului tegangan line masukan EAB, seperti dapat dilihat dari diagram phasor. Jika saluran keluaran memasuki kelompok beban terisolasi, beda fasanya tidak masalah. Tetapi jika saluran dihubungkan paralel dengan saluran masukan dengan sumber lain, beda phasa 30° mungkin akan membuat hubungan paralel tidak memungkinkan, sekalipun jika saluran tegangannya sebaliknya identik.

Keuntungan penting dari hubungan bintang adalah bahwa akan menghasilkan banyak isolasi/penyekatan yang dihasilkan di dalam transformator. Lilitan HV (high Voltage/tegangan tinggi) telah diisolasi/dipisahkan hanya 1/1,73 atau 58% dari tegangan saluran.


Gambar 8. Skema Diagram Hubungan Delta-Bintang dan Diagram Phasor

Transformator hubungan segitiga terbuka (open-delta)

Hubungan open-delta ini untuk merubah tegangan sistem 3 fasa dengan menggunakan hanya 2 transformator yang dihubungkan secara open–delta. Rangkaian open–delta adalah identik dengan rangkaian delta–delta, kecuali bahwa satu transformer tidak ada. Bagaimanapun, hubungan open-delta jarang digunakan sebab hanya mampu dibebani sebesar 86.6% (0,577 x 3 x rating trafo) dari kapasitas transformator yang terpasang.


Gambar 7. Hubungan Open Delta.

Sebagai contoh, jika 2 transformator 50 kVA dihubungkan secara open–delta, kapasitas transformator bank yang terpasang adalah jelas 2x50 = 100kVA. karen terhubung open-delta, maka transformator hanya dapat dibebani 86.6 kVA sebelum transformator mulai menjadi overheat (panas berlebih). Hubungan open–delta utamanya digunakan dalam situasi darurat. Maka, jika 3 transformator dihubungkan secara delta–delta dan salah satunya rusak dan harus diperbaiki/dipindahkan, maka hal ini memungkinkan

Transformator hubungan Zig-zag

Transformator dengan hubungan Zig-zag memiliki ciri khusus, yaitu belitan primer memiliki tiga belitan, belitan sekunder memiliki enam belitan dan biasa digunakan untuk beban yang tidak seimbang (asimetris) - artinya beban antar fasa tidak sama, ada yang lebih besar atau lebih kecil-


Gambar 9. Hubungan Bintang-zigzag (Yzn5)

Gambar 9 menunjukkan belitan primer 20 KV terhubung dalam bintang L1, L2 dan L3 tanpa netral N dan belitan sekunder 400 V merupakan hubungan Zig-zag dimana hubungan dari enam belitan sekunder saling menyilang satu dengan lainnya. Saat beban terhubung dgn phasa U dan N arus sekunder I2 mengalir melalui belitan phasa phasa U dan phasa S. Bentuk vektor tegangan Zig-zag garis tegangan bukan garis lurus,tetapi bergeser dengan sudut 60°.

Penggunaan Alat Penghemat Listrik Di Rumah

Penggunaan Alat Penghemat Listrik Di Rumah


Penggunaan alat penghemat pemakaian energi listrik untuk rumah tangga masih kontroversi sampai saat ini. Ada pihak yang mengatakan bahwa penggunaan alat penghemat listrik tersebut tidak efektif dan hanya merupakan pembodohan kepada publik saja, namun klaim tentang manfaat dan keefektifan dari alat tersebut pun tak kalah hebatnya, terutama yang disebar-luaskan oleh pihak-pihak yang berkepentingan dan mendapat keuntungan dari penjualan alat ini.

Mengenai penggunaan alat ini pun menjadi topik yang menarik di forum dunia listrik (dapat anda lihat di sini). Namun Dunia listrik berusaha untuk mendapatkan penjelasan yang dapat dipertanggung-jawabkan mengenai keefektifan penggunaan alat penghemat listrik tersebut, dan akhirnya mendapatkan informasi yang diinginkan pada situs PLN-Distribusi Jawa Tengah dan D.I Yogyakarta. Berikut kutipannya:

“Umumnya, penjual memberi iming-iming bila alatnya bisa menghemat listrik 10 hingga 40 persen. Bahkan juga diberi jaminan barang akan diganti baru bila tidak terjadi perubahan tagihan listrik dalam 1 tahun. Tak ayal, ini menjadi magnet tersendiri bagi masyarakat terus berusaha menekan pengeluaran.

Di Indonesia, alat ini mulai dipasarkan sejak 2003. Berbagai merek didatangkan dari luar negeri, baik dari Jerman, Italia maupun negara Eropa lainnya. Meski ada juga buatan lokal yang mengadopsi teknologi luar.

Biasanya, alat hemat energi buatan luar negeri dipatok lebih mahal dibanding buatan lokal. Alat hemat listrik buatan Jerman misalnya dipasarkan dengan harga antara Rp 1,25 juta sampai Rp 1,5 juta, bergantung kapasitas daya yang digunakan. Sedang alat hemat energi buatan lokal berkisar Rp 100 ribu hingga Rp 300 ribu.

Kompensator Daya

Sebetulnya, cara kerja alat itu terbilang sederhana. Menurut teori, untuk mengurangi pemakaian energi listrik diperlukan sebuah kompensator daya. Kompensator ini bekerja sebagai pengatur tegangan yang akan mengurangi catu tegangan ke beban, yang berarti mengurangi catu daya ke beban. Nah, dengan mengurangi catu daya secara otomatis energi yang terpakai pun akan berkurang dibanding keadaan normal.

Ada dua jenis kompensator daya yang banyak beredar di pasaran, yakni kompensator yang dipasang secara paralel dengan beban dan kompensator yang dipasang seri dengan beban. Dari dua jenis kompensator daya ini, yang banyak beredar di pasaran adalah kompensator daya yang dipasang paralel. Jika dirata-rata, perbandingan antara jumlah kompensator daya yang dipasang paralel dengan seri kira-kira 9:1.

Kompensator yang dipasang secara paralel terhadap beban sebenarnya merupakan kompensator daya aktif-reaktif. Asas kerja kompensator ini memanfaatkan jenis arus yang dialirkan PLN ke pelanggan, yakni arus bolak-balik yang memiliki dua komponen daya: aktif dan reaktif. Daya aktif adalah daya sebenarnya yang dibutuhkan beban. Sebaliknya, daya reaktif adalah daya yang dapat terjadi karena induktansi maupun kapasitansi. Induktansi disebabkan komponen yang berbentuk kumparan seperti motor listrik maupun transfomator step down pada adaptor. Sedangkan kapasitansi diakibatkan oleh komponen kapasitor. Resultan atau jumlah dari keduanya kemudian membentuk daya nyata.

Dalam kenyataannya, daya yang dipasok oleh PLN adalah daya nyata. Oleh sebab itu untuk meminimalisasi daya yang dipasok oleh PLN maka sebisa mungkin daya reaktif diminimalisasi. Jika beban bersifat induktif maka diberi kapasitor dan jika beban bersifat kapasitif maka beban diberi induktor. Karena umumnya peralatan yang digunakan dalam lingkungan perumahan bersifat induktif, maka kompensator daya untuk mengeliminasi daya reaktif tak lain berupa kapasitor. Biasanya, alat ini dipasang secara paralel pada jaringan listrik, tepatnya setelah kotak MCB (Mini Circuit Breaker) atau sekering yang telah terpasang sebelumnya.

Sementara itu, kompensator daya yang dipasang seri dengan pemanfaat listrik merupakan sebuah alat penurun kinerja beban dengan cara menurunkan catu daya melalui penurunan tegangan catu. Hasil keluaran dari pemasangan alat kompensator daya jenis seri ini adalah diperoleh penurunan pemakaian daya nyata (watt), tetapi tegangan catu ke pemanfaat listrik juga dibuat turun. Sepintas terlihat sebagai penghematan pemakaian energi listrik, tetapi sesungguhnya kinerja pemanfaat listrik menurun dan dapat berakibat mengurangi umur pemanfaatan listrik.

Untung Rugi Penggunaan Peralatan

Berdasar penelitian alat penghemat energi yang dilakukan Pranyoto, dari bagian Litbang PLN, penggunaan alat penghemat energi, baik berupa kompensator yang dipasang seri atau paralel ternyata tidak memberi kontribusi seperti yang dijanjikan produsen. Alih-alih menurunkan penggunaan daya, yang terjadi pada penggunaan alat semacam itu adalah mengurangi efisiensi peralatan dan umur pemanfaatan listrik. Ini disebabkan meski diperoleh penurunan pemanfaatan daya nyata antara 15 persen hingga 20 persen, tetapi pemanfaatan listrik juga dibuat menurun hingga 20 persen. Misal, AC dan kulkas menjadi kurang dingin dan lampu menjadi redup.

Selain itu, pada kondisi tertentu yang mempertimbangkan adanya hambatan dalam kabel, penghematan yang terjadi dalam rumah sangat kecil. Penghematan hanya akan didapat ketika terjadi kondisi ekstrim dimana daya nyata dua kali lipat daya aktifnya. Namun jika dalam kondisi ideal alat ini justru akan menambah tagihan listrik meskipun besarnya tidak seberapa.

Namun demikian alat ini juga berguna mengoptimalisasi daya listrik agar daya yang digunakan dapat digunakan sesuai daya yang diperbolehkan oleh PLN. Misal, pada perumahan, kWh meter akan menghitung daya aktif, tetapi MCB bekerja berdasarkan arus yang mengalir pada resultan daya nyata. Dengan menggunakan alat ini, maka resiko adanya pemutusan arus (ngejepret) oleh MCB dapat berkurang, dengan catatan bahwa rumah tersebut banyak menggunakan peralatan yang bersifat induktif. Jadi jika sebuah rumah berdaya 900 watt, terkadang dengan peralatan yang berdaya 600 watt atau 700 watt ternyata listriknya ngejepret. Nah, dengan pemasangan alat penghemat energi maka penggunaan daya akan dapat dioptimalkan mendekati 900 watt.

Jurus Menggaet Konsumen

Seringkali seorang calon pembeli tertarik iming-iming penurunan tagihan listrik yang diungkapkan penjual. Biasanya konsumen akan diberi demonstrasi yang meyakinkan. Ada tiga modus yang sering digunakan.

Pertama, dengan menggunakan amperemeter. Ketika kompensator dipasang, amperemeter akan menunjukkan angka lebih rendah dibanding kondisi normal. Konsumen yang biasanya awam dengan masalah kelistrikan seringkali terkecoh. Tentu saja keadaan sebenarnya tidak demikian. Amperemeter mengukur arus pada komponen daya nyata dan bukan pada komponen daya aktif. Walaupun besaran yang ditunjukkan amperemeter akan berubah tergantung apakah alat penghemat dipasang atau tidak, besaran arus pada komponen daya aktif sebenarnya tidak akan berubah.

Kedua, dengan menggunakan wattmeter. ’Jurus’ ini memang lebih cerdik dari yang pertama, karena PLN memang mengukur berdasarkan Watt. Tetapi yang tidak disadari konsumen adalah ada hambatan berukuran besar atau gulungan kabel yang sangat panjang di belakang alat demonstrasi ini yang menghubungkan beban dengan sumber listrik, terkadang bahkan sampai 100 meter. Jelas, ini sangat kontras dengan keadaan instalasi di rumah yang rata-rata hanya mencapai 10 meter.

Ketiga, masih menggunakan wattmeter, tetapi tanpa memperlihatkan besaran tegangan. Alat ini dengan meyakinkan dapat memperlihatkan bahwa penggunaan daya akan dihemat. Tetapi konsumen tidak menyadari bahwa sebenarnya tegangan listrik sudah jauh di bawah 220V, diturunkan dari keadaan normal.

Sebenarnya ada cara mudah menekan tagihan rekening listrik yang tidak memerlukan peralatan tambahan semacam ”alat hemat listrik”. Salah satunya mengkonsumsi listrik seperlunya atau mematikan peralatan saat tidak digunakan. Misal ketika keluar kamar, lampu dimatikan. Jangan lupa pakai lampu hemat energi. Meski agak sedikit mahal tapi konsumsi dayanya jauh lebih kecil dibanding lampu biasa dan umur penggunaannya lebih lama.

So, mudah kan? Tanpa perlu membeli alat hemat listrik yang berharga jutaan, Anda juga dapat menghemat listrik dengan mudah dan nyaman.”

sumber: www.plnjateng.co.id

Tentang kiat-kiat hemat listrik, dapat dibaca pada artikel di sini dan sini

dan untuk booklet cara hemat listrik dari Energy Management Indonesia, silahkan download di sini

Karakteristik Relai Jarak (Distance Relay), Pola Proteksi dan penyetelan Relai Jarak

Karakteristik Relai Jarak (Distance Relay), Pola Proteksi dan penyetelan Relai Jarak
 

Untuk cara kerja dan fungsi relai jarak telah dibahas pada artikel sebelumnya di sini. Dan artikel kali ini akan membahas mengenai karakteristik dari relai jarak atau distance relay tersebut. Karakteristik relai jarak merupakan penerapan langsung dari prinsip dasar relai jarak, karakteristik ini biasa digambarkan didalam diagram R-X.

Adapun karakteristik relai jarak dibedakan menjadi:
> Karakteristik impedansi
> Karakteristik Mho
> Karakteristik Reaktance
> Karakteristik Quadrilateral


Diagram R-X

Karakteristik Impedansi

Ciri-ciri nya :
- Merupakan lingkaran dengan titik pusatnya ditengah-tengah, sehingga mempunyai sifat non directional. Untuk diaplikasikan sebagai pengaman SUTT perlu ditambahkan relai directional.
- Mempunyai keterbatasan mengantisipasi gangguan tanah high resistance.
- Karakteristik impedan sensitive oleh perubahan beban, terutama untuk SUTT yang panjang sehingga jangkauan lingkaran impedansi dekat dengan daerah beban.

Gambar 1. Karakteristik Impedansi

Karakteristik Mho

Ciri-ciri :
- Titik pusatnya bergeser sehingga mempunyai sifat directional.
- Mempunyai keterbatasan untuk mengantisipasi gangguan tanah high resistance.
- Untuk SUTT yang panjang dipilih Zone-3 dengan karakteristik Mho lensa geser.

Gambar 2a. Karakteristik Mho


Gambar 2b. Karakteristik Mho Z1,Z2 parsial Cross-polarise Mho, Z3 Lensa geser.

Karakteristik Reaktance

Ciri-ciri :
- Karateristik reaktance mempunyai sifat non directional.
- Untuk aplikasi di SUTT perlu ditambah relai directional.
- Dengan seting jangkauan resistif cukup besar maka relai reactance dapat mengantisipasi gangguan tanah dengan tahanan tinggi.

Gambar 3. Karakteristik Reaktance dengan Starting Mho.

Karakteristik Quadrilateral

Ciri-ciri :
- Karateristik quadrilateral merupakan kombinasi dari 3 macam komponen yaitu: reactance, berarah dan resistif.
- Dengan seting jangkauan resistif cukup besar maka karakteristik relai quadrilateral dapat mengantisipasi gangguan tanah dengan tahanan tinggi.
- Umumnya kecepatan relai lebih lambat dari jenis mho.

Gambar 4. Karakteristik Quadrilateral

Pola Proteksi

Agar gangguan sepanjang SUTT dapat di-trip-kan dengan seketika pada kedua sisi ujung saluran, maka relai jarak perlu dilengkapi fasilitas teleproteksi. Pola-pola proteksi tersebut adalah:

1. Pola Dasar
Ciri-ciri Pola dasar :
- Tidak ada fasilitas sinyal PLC
- Untuk lokasi gangguan antara 80 – 100 % relai akan bekerja zone-2 yang waktunya lebih lambat (tertunda).


2. Pola PUTT (Permissive Underreach Transfer Trip)
Prinsip Kerja dari pola PUTT :
- Pengiriman sinyal trip (carrier send) oleh relai jarak zone-1.
- Trip seketika oleh teleproteksi akan terjadi bila relai jarak zone-2 bekerja disertai dengan menerima sinyal. (carrier receipt).
- Bila terjadi kegagalan sinyal PLC maka relai jarak kembali ke pola dasar.
- Dapat menggunakan berbeda type dan relai jarak.


3. Permissive Overreach transfer Trip
Prinsip Kerja dari pola POTT :
- Pengiriman sinyal trip (carrier send) oleh relai jarak zone-2.
- Trip seketika oleh teleproteksi akan terjadi bila relai jarak zone-2 bekerja disertai dengan nmenerima sinyal (carrier receipt).
- Bila terjadi kegagalan sinyal PLC maka relai jarak kembali ke pola dasar.
- Dapat menggunakan berbeda type dan relai jarak.


4. Pola Blocking (Blocking Scheme)
Prinsip Kerja dari pola Blocking :
- Pengiriman sinyal block (carrier send) oleh relai jarak zone-3 reverse
- Trip seketika oleh teleproteksi akan terjadi bila relai jarak zone-2 bekerja disertai dengan tidak ada penerimaan sinyal block. (carrier receipt).
- Bila terjadi kegagalan sinyal PLC maka relai jarak akan mengalami mala kerja.
- Membutuhkan sinyal PLC cukup half duplex.
- Relai jarak yang dibutuhkan merk dan typenya sejenis.


Penyetelan Daerah Jangkauan pada Relai Jarak

Relai jarak pada dasarnya bekerja mengukur impedansi saluran, apabila impedansi yang terukur / dirasakan relai lebih kecil impedansi tertentu akibat gangguan (Zset < ZF) maka relai akan bekerja. Prinsip ini dapat memberikan selektivitas pengamanan, yaitu dengan mengatur hubungan antara jarak dan waktu kerja relai.



Penyetelan relai jarak terdiri dari tiga daerah pengamanan, Penyetelan zone-1 dengan waktu kerja relai t1, zone-2 dengan waktu kerja relai t2, dan zone-3 waktu kerja relai t3.

1. Penyetelan Zone-1
Dengan mempertimbangkan adanya kesalahan-kesalahan dari data saluran, CT, PT, dan peralatan penunjang lain sebesar 10% - 20 %, zone-1 relai disetel 80 % dari panjang saluran yang diamankan.
Zone-1 = 0,8 . Z L1 (Saluran)
Waktu kerja relai seketika, (t1= 0) tidak dilakukan penyetelan waktu .

2. Penyetelan Zone-2
Prinsip peyetelan Zone-2 adalah berdasarkan pertimbanganpertimbangan sebagai berikut:
Zone-2 min = 1,2 . ZL1
Zone-2 mak = 0,8 (Z L1 + 0,8. ZL2)
Dengan : ZL1 = Impedansi saluran yang diamankan.
ZL1 = Impedansi saluran berikutnya yang terpendek (Ω)
Waktu kerja relai t2= 0.4 s/d 0.8 dt.

3. Penyetelan zone-3
Prinsip penyetelan zone-3 adalah berdasarkan pertimbanganpertimbangan sebagai berikut:
Zone-3min = 1.2 ( ZL1 + 0,8.ZL2 )
Zone-3mak1 = 0,8 ( ZL1 + 1,2.ZL2 )
Zone-3mak2 = 0,8 ( ZL1 + k.ZTR )
Dengan : L1 = Impedansi saluran yang diamankan
ZL2 = Impedansi saluran berikutnya yang terpanjang
Waktu kerja relai t3= 1.2 s/d 1.6 dt.

4. Peyetelan zone-3 reverse
Fungsi penyetelan zone-3 reverse adalah digunakan pada saat pemilihan teleproteksi pola blocking. Dasar peyetelan zone-3 reverse ada dua jenis :
- Bila Z3 rev memberi sinyal trip.
Zone-3 rev = 1.5 Z2-ZL1
- Bila Z3 rev tidak memberi sinyal trip.
Zone-3 rev = 2 Z2-ZL1.

5. Penyetelan Starting
Fungsi starting relai jarak adalah:
1. Mendeteksi adanya gangguan.
2. Menentukan jenis gangguan dan memilih fasa yang terganggu.

Prinsip penyetelan starting di bagi 2, yaitu :
1. Starting arus lebih :
I fasa-fasa = 1.2 CCC atau ct
I fasa-netral = 0.1. CCC atau ct

2. Starting impedansi
Zsmin = 1.25 x Zone-3
Zs max= 0.5 x kV/(CCC atau Ct x√3)

6. Penyetelan Resistif reach
Fungsi penyetelan resistif reach adalah mengamankan gangguan yang bersifat high resistance. Prinsip penyetelan resistif reach (Rb) tidak melebihi dari kreteria setengah beban (1/2 Z beban ).
- Untuk system 70 kV:
Rb = 15 x Zone-1 x k0 x 2.
- Untuk system 150 dan 500 kV:
Rb = 8 x Zone-1 x k0 x 2

Minggu, 27 Maret 2011

Bahan Listrik

Dalam dunia elektronika kita tidak mungkin terlepas dari apa yang dinamakan bahan–bahan listrik. Terdapat tiga klasifikasi utama dalam dunia elektronika yang sering dijumpai yakni; isolator, konduktor dan semikonduktor.
Perbedaan mendasar dari ketiga jenis bahan ini adalah terletak ada tahanan jenis tiap–tiap bahan. Untuk isolator memiliki tahanan jenis 104Ωm – 1014Ωm, konduktor memiliki tahanan jenis 10-7Ωm – 10-8Ωm, sedangkan untuk semikonduktor memiliki tahanan jenis 10-3Ωm – 3x103Ωm. Contoh bahan–bahan untuk isolator, konduktor dan semikonduktor adalah sebagai berikut:

Isolator:

  • Gelas / Kaca = 1010 Ωm
  • Mika = 1011 Ωm
  • PVC = 1013 Ωm
  • Karet Murni 1012 Ωm s.d. 1014 Ωm

Konduktor :

  • Aluminium 2,7×10-8 Ωm
  • Brass (70 Cu/30 Zn) 8 × 10-8 Ωm
  • Tembaga 1,7×10-8 Ωm
  • Baja 15 × 10-8 Ωm

Semikonduktor :

  • Silicon 2,3 × 103 Ωm
  • Germanium 0,45 Ωm
Pada bahan konduktor ketika suhu meningkat maka tahanan dari konduktor pun ikut meningkat, pada isolator perubahan suhu sangat kecil pengaruhnya sehingga sering diabaikan, sedangkan pada semikonduktor jika suhu meningkat maka tahanan-nya akan turun.
Dari uraian diatas nilai tahanan jenis isolator adalah yang tertinggi dari semua bahan, sehingga memiliki sifat yang kurang baik dalam menghantarkan arus listrik. Pada bahan konduktor nilai tahanan jenisnya adalah yang terendah sehingga sangat baik digunakan sebagai penghantar arus listrik.
Bahan semikonduktor memiliki nilai tahanan jenis yang berada diantara isolator dan konduktor, sehingga bahan semikonduktor memiliki dua sifat yang berbeda, semikonduktor bisa bersifat sebagai isolator dan bisa juga bersifat sebagai konduktor jika mendapat pengaruh dari luar, misalnya suhu. Bahan semikonduktor banyak digunakan pada komponen aktif elektronika, misalnya pada transistor atau FET.

Semikonduktor Tidak Murni

Seperti dijelaskan sebelumnya bahwa silicon dan germanium merupakan salah satu contoh dari bahan semikonduktor. Jika suhu kedua bahan ini meningkat diatas suhu kamar maka kedua bahan ini akan bersifat sebagai konduktor. Sedangkan jika suhu kedua bahan tersebut turun dibawah suhu kamar maka nilai tahanan-nya akan meningkat dan jika sudah mencapai titik maksimal maka kedua bahan ini akan bersifat sebagai isolator.
Semikonduktor murni memiliki jumlah proton dan elektron yang seimbang tetapi jika semikonduktor ini ditambahkan bahan yang tidak murni maka semikonduktor akan berubah menjadi tidak murni, proses ini dinamakan ”Doping”. Proses doping dengan menambahkan bahan antimony, arsenic, atau phosphorus yang memiliki kelebihan elektron pada semikonduktor murni, menyebabkan semikonduktor memiliki kelebihan elektron dan menjadikannya sebagai semikonduktor material tipe-N.
Pada proses doping, menambahkan bahan indium, aluminium, dan boron yang memiliki kelebihan proton pada semikonduktor murni menyebabkan semikonduktor memiliki kelebihan proton dan menjadikannya sebagai semikonduktor material tipe-P.
Hasil kedua doping inilah yang digunakan pada komponen–komponen elektronika seperti pada diode dan transistor. Diode merupakan penggabungan dua tipe material semikonduktor tipe-N dan tipe-P, sedangkan transistor merupakan penggabungan tiga material semikonduktor tipe-N, tipe-P, dan salah satu dari tipe-N atau tipe-P, sehingga pada transistor bipolar terdapat dua konfigurasi gabungan material semikonduktor yaitu P-N-P atau N-P-N.

Koil dan Transformator

Koil merupakan komponen yang tidak umum digunakan dalam rangkaian elektronika, aplikasi penggunaan koil biasanya terdapat pada rangkaian osilator dan radio. Koil merupakan gulungan satu lapis atau beberapa lapis kawat atau kabel pada suatu inti, dimana inti koil biasanya terbuat dari logam, ferit, atau udara.
gambar-koil
Pada gambar diatas koil dengan inti ferit diperlihatkan pada dua koil paling sebelah kiri, sedangkan yang ujung sebelah kanan merupakan koil dengan inti udara.
Karakteristik dasar dari sebuah koil adalah Induksi. Induksi diukur dengan satuan Henry (H), tetapi pada pakteknya kebanyakan koil memiliki nilai induksi antara mikro Henry (uH) sampai dengan mili Henry (mH).

Sebagai pengingat

1H = 1000mH = 106uH
Dalam rangkaian elektronika simbol koil digambarkan seperti gambar dibawah ini.
simbol-koil
Selain induksi, karakateristik dari sebuah koil adalah reaktansi, dimana reaktansi merupakan nilai tahanan koil dalam satuan Ohm (Ω). Reaktansi koil dirumuskan sebagai berikut.
persamaan-reaktansi-koil
Dimana:
XL = Reaktansi koil dalam Ohm (Ω)
π = 3,14
f = Frekuensi dalam Hertz (Hz)
L = Induksi dalam Henry (H)

Sebagai contoh

jika frekuensi (f) = 300Hz, dan induksi koil (L) = 0,5mH, berapakah reaktansi koil (XL) ?
XL = 2.π.f.L
XL= 2 x 3,14 x 300 x 0,5x10-3
XL = 0,942 Ω
Reaktansi koil hanya berlaku pada rangkaian arus bolak balik (AC – Alternating Current), sedangkan pada arus searah (DC – Direct Current) nilai reaktansi koil = 0Ω (Nol Ohm).

Transformator

Transformator atau biasa disebut juga sebagai trafo, merupakan perangkat elektronika yang bekerja dengan sistem induksi. Transformator itu sendiri merupakan kumparan kawat atau kabel yang dililitkan pada suatu inti, transformator pada umumnya terdapat dua kumparan yaitu kumparan Primer dan kumparan Sekunder.
gambar-transformator
Fungsi transformator itu sendiri adalah sebagai konverter tegangan, dari tegangan yang lebih besar ke tegangan yang lebih kecil (biasa disebut Transformator Step Down) atau dari tegangan yang lebih kecil ke tegangan yang lebih besar (biasa disebut Transformator Step Up).
simbol-transformator
Simbol Transformator

Prinsip Kerja Transformator

Seperti dijelaskan sebelumnya bahwa transformator terdiri dari dua buah kumparan yakni kumparan primer dan sekunder yang bekerja dengan sistem induksi, untuk lebih jelasnya perhatikan gambar berikut.
pronsip-kerja-transformator
Pada saat tegangan sebesar V1 (220V AC) diberikan pada kumparan PRIMER, arus AC Ip pun mengalir pada kumparan PRIMER yang menghasilkan medan magnet pada INTI FERIT. Medan magnet tersebut menginduksi kumparan SEKUNDER sehingga menghasilkan tegangan V2 (24V AC) pada kumparan SEKUNDER yang terhubung dengan beban R (30 Ohm).
Hubungan antara tegangan PRIMER dan SEKUNDER dapat dinyatakan oleh persamaan berikut:
hub-teg-prim-sekun
Dimana:
Vs = Tegangan SEKUNDER
Vp = Tegangan PRIMER
Ns = Jumlah lilitan SEKUNDER
Np = Jumlah lilitan PRIMER
Hubungan antara arus PRIMER dan SEKUNDER dapat dinyatakan oleh persamaan berikut:
hub-arus-prim-sekun
Dimana:
Ip = Arus PRIMER
Is = Arus SEKUNDER Sedangkan daya dari transformator dapat dihitung menggunakan persamaan berikut:
P = Vs x Is (Watt)
Persamaan-persamaan diatas merupakan persamaan untuk kondisi ideal dimana daya yang diberikan pada kumparan PRIMER akan ter-konversi sempurna pada kumparan SEKUNDER. Pada dunia nyata daya listrik yang ter-konversi pada kumparan Sekunder tidaklah 100% sempurna melainkan ada daya yang ter-konversi menjadi panas. Besarnya perbedaan rasio daya PRIMER dan SEKUNDER disebut efisiensi (η).
persamaan-efisiensi
Dimana:
Ps = Daya kumparan SEKUNDER (Watt)
Pp = Daya kumparan PRIMER (Watt)

TRANSISTOR

Transistor merupakan komponen aktif yang terbuat dari bahan semikonduktor dan memegang peranan penting dalam suatu rangkaian elektronika. Pada umumnya transistor digunakan sebagai penguat (amplifier) dan transistor juga dapat berfungsi sebagai sakelar.
Menurut dari prinsip kerjanya transistor dibagi menjadi dua jenis yaitu; Transistor Bipolar (dwi kutub) dan Transistor Efek Medan (FET – Field Effect Transistor).

Transistor Bipolar (Dwikutub)

Transistor Bipolar adalah transistor yang paling umum digunakan di dunia elektronika. Transistor ini terdiri dari 3 lapisan material semikonduktor yang terdiri dari dua formasi lapisan yaitu lapisan P-N-P (Positif-Negatif-Positif) dan lapisan N-P-N (Negatif-Positif-Negatif). Sehingga menurut dua formasi lapisan tersebut transistor bipolar dibedakan kedalam dua jenis yaitu transistor PNP dan transistor NPN.
simbol-transistor
Seperti terlihat pada gambar diatas transistor memiliki tiga kaki yang masing-masing diberi nama B (Basis), K (Kolektor), dan E (Emiter). Perbedaan fungsi dari jenis transistor ini (PNP atau NPN) terletak pada polaritas pemberian tegangan bias dan arah arus listrik yang selalu berlawanan.
Fungsi dari transistor bipolar itu sendiri adalah sebagai pengatur arus listrik (regulator arus listrik), dengan kata lain transistor dapat membatasi arus yang mengalir dari Kolektor ke Emiter atau sebaliknya (tergantung jenis transistor, PNP atau NPN) berdasarkan pada jumlah arus listrik yang diberikan pada kaki Basis.
gambar-transistor
Nama Bipolar diambil karena elektron yang mengalir pada transistor ini melewati dua tipe material semikonduktor dengan polaritas P (Positif) dan N (Negatif). Jika tidak ada arus listrik yang mengalir pada kaki Basis, maka transistor akan dalam keadaan tertutup sehingga tidak ada arus yang mengalir pada kaki Kolektor ke Emiter atau sebaliknya. Sedangkan jika arus listrik diberikan pada kaki Basis maka transistor akan kembali terbuka sehingga arus dapat mengalir dari Kolektor ke Emiter atau sebaliknya, sifat transistor ini banyak digunakan dalam rangkaian elektronika sebagai sakelar elektronik.

Transistor Efek Medan (Field Effect Transistor (FET))

FET memiliki tiga kaki terminal yang masing-masing diberi nama Drain (D), Source (S), dan Gate (G). FET beroperasi dengan cara mengendalikan aliran elektron dari terminal Source ke Drain melalui tegangan yang diberikan pada terminal Gate.
simbol-fet
Perbedaan mendasar antara FET dan transistor bipolar adalah; jika transistor bipolar mengatur besar kecil-nya arus listrik yang melalui kaki Kolektor ke Emiter atau sebaliknya melalui seberapa besar arus yang diberikan pada kaki Basis, sedangkan pada FET besar kecil-nya arus listrik yang mengalir pada Drain ke Source atau sebaliknya adalah dengan seberapa besar tegangan yang diberikan pada kaki Gate.

Prinsip Kerja Transistor

Cara terbaik untuk mengetahui bagaimana sebenarnya transistor bekerja adalah dengan cara melakukan eksperimen, eksperimen dapat dilakukan dengan dua cara yaitu dengan menggunakan komponen elektronika sebenarnya atau dengan menggunakan program simulasi komputer. Disini akan dilakukan eksperimen dengan menggunakan program simulasi komputer karena dapat mempersingkat waktu, aman, dan murah tentunya.
prinsip-kerja-transistor-01
Rangkaian yang digunakan pada simulasi seperti ter-gambar pada gambar diatas. Pada rangkaian diatas nilai R2 = 0Ω sehingga tegangan pada Vbe = 0V otomatis tidak ada arus listrik yang mengalir ke kaki Basis (Ib = 0A) dan juga arus Ic = 0A. Sekarang perhatikan rangkaian berikut.
prinsip-kerja-transistor-02
Dengan mengubah nilai R1 menjadi 3kΩ dan R2 menjadi 2kΩ kemudian hasil yang terukur adalah;
Vbe = 828mV
Ib = 976,152uA
Ic = 48,580mA.
Ie = 49,557mA
Sekali lagi dengan mengubah nilai R1 menjadi 2kΩ dan R2 menjadi 3kΩ
prinsip-kerja-transistor-03
Diperoleh hasil;
Vbe = 846mV
Ib = 1,794mA
Ic = 48,766mA.
Ie = 50,56mA
Agar memudahkan perbandingan data antara tiga eksperimen diatas maka data-data hasil simulasi di-masukan kedalam tabel berikut;
tabel-perbandingan
Dari semua hasil simulasi yang dibandingkan pada tabel diatas dapat ditarik kesimpulan bahwa arus pada Kolektor (Ic) berubah seiring berubah-nya arus pada Basis (Ic), dan semakin besar tegangan Basis-Emiter (Vbe) semakin besar pula arus pada Kolektor (Ic), dan jika Vbe = 0 maka Ib, Ic, dan Ie akan sama dengan 0 (nol).
Dari simulasi diatas pula terdapat fakta bahwa;
Ie = Ib + Ic
Hubungan perbandingan antara besarnya arus listrik yang mengalir pada kaki Kolektor (Ic) dan besarnya arus listrik pada kaki Basis (Ib) disebut sebagai Koefisien Penguatan Arus pada transistor dan di simbol-kan sebagai hFE, persamaan hFE adalah sebagai berikut;
persamaan-hfe
Dimana;
hFE = Koefisien Penguatan Arus Transistor
Ic = Arus Kolektor dalam Ampere (A)
Ib = Arus Basis dalam Ampere (A)

DIODA

Dioda adalah komponen elektronika yang hanya memperbolehkan arus listrik mengalir dalam satu arah sehingga dioda biasa disebut juga sebagai “Penyearah”. Dioda terbuat dari bahan semikonduktor jenis silicon dan germanium. Simbol dioda dalam rangkaian elektronika diperlihatkan pada gambar berikut.
simbol-dioda
Dioda terbuat dari penggabungan dua tipe semikonduktor yaitu tipe P (Positive) dan tipe N (Negative), kaki dioda yang terhubung pada semikonduktor tipe P dinamakan “Anode” sedangkan yang terhubung pada semikonduktor tipe N disebut ”Katode”.
gambar-pn-junction
Pada bentuk aslinya pada dioda terdapat tanda cincin yang melingkar pada salah satu sisinya, ini digunakan untuk menandakan bahwa pada sisi yang terdapat cincin tersebut merupakan kaki Katode.
gambar-dioda
Arus listrik akan sangat mudah mengalir dari anoda ke katoda hal ini disebut sebagai “Forward-Bias” tetapi jika sebaliknya yakni dari katoda ke anoda, arus listrik akan tertahan atau tersumbat hal ini dinamakan sebagai “Reverse-Bias”. Untuk lebih jelasnya perhatikan contoh berikut.

Catatan :

Tegangan yang melewati dioda dalam keadaan forward-bias akan turun sebesar 0,7V pada Silicon, 0,3V pada Germanium.
bias-dioda
Pada contoh gambar sebelah kiri dioda dalam keadaan forward-bias sehingga menyebabkan lampu menyala ini dikarenakan arus listrik dapat mengalir tanpa hambatan apa pun pada dioda. Pada contoh gambar sebelah kanan sumber tegangan dibalik polaritas-nya sehingga arus listrik akan mengalir melalui katoda dioda, tetapi hal ini menyebabkan dioda dalam keadaan reverse-bias sehingga arus listrik tidak dapat mengalir melewati dioda dan menyebabkan lampu padam. Oleh karena itu dioda banyak digunakan sebagai pengaman pada rangkaian elektronika sebagai pencegah terbalik-nya pemasangan polaritas dari sumber tegangan.

Jenis–Jenis Dioda

Diode Zener

Ketika tegangan reserve-bias maksimum diberikan kepada dioda, maka arus listrik akan mengalir seperti layaknya pada keadaan forward-bias. Arus listrik ini tidak akan merusak dioda jika tidak melebihi dari apa yang telah ditentukan. Ketika tegangan reserve-bias ini dapat dikendalikan pada level tertentu maka dioda ini disebut sebagai Dioda Zener.
simbol-dioda-zener
Dioda zener memiliki nilai tegangan yang telah ditentukan dalam pembuatan-nya, nilai tegangan ini mempunyai rentang dari beberapa volt hingga ratusan volt dan toleransi dioda zener berkisar antara 5% - 10%. Pada aplikasinya di dalam rangkaian elektronika, dioda zener berfungsi sebagai pengatur tegangan (regulator) dengan berperan sebagai beban.
aplikasi-dioda-zener
Dioda zener akan mengalirkan banyak arus listrik jika tegangan terlalu tinggi, dan mengurangi arus listrik jika tegangan terlalu rendah, sehingga menyebabkan tegangan stabil. Seperti pada contoh gambar diatas tegangan dari sumber tegangan adalah 12V tetapi tegangan yang terukur pada Rload adalah 9V sama dengan nilai tegangan dioda zener.

LED (Light Emitting Diodes)

LED merupakan jenis dioda yang jika diberikan tegangan forward-bias akan menimbulkan cahaya dengan warna-warna tertentu seperti merah, hijau, dan kuning.
gambar-simbol-led
Simbol LED hampir sama dengan simbol dioda hanya saja pada simbol LED ditambahkan dua garis panah ke arah luar seperti ter-ilustrasi pada gambar diatas. LED dalam rangkaian elektronika biasa digunakan sebagai lampu indikator.

Photodioda

Photodioda adalah dioda yang bekerja berdasarkan intensitas cahaya, dimana jika photodioda terkena cahaya maka photodioda bekerja seperti dioda pada umumnya, tetapi jika tidak mendapat cahaya maka photodioda akan berperan seperti resistor dengan nilai tahanan yang besar sehingga arus listrik tidak dapat mengalir.
simbol-photodioda
Simbol dan bentuk photodioda hampir sama dengan LED, tetapi pada simbol photodioda arah dua panahnya menghadap ke dalam. Photodioda banyak digunakan sebagai sensor cahaya dalam dunia elektronika, karena sifatnya yang peka terhadap cahaya.

Resistor

Resistor merupakan komponen elektronika yang berfungsi untuk membatasi arus listrik dan juga digunakan sebagai pembagi tegangan listrik, atau resistor dapat dikatakan juga sebagai penentu besarnya suatu arus dan tegangan listrik pada suatu rangkaian elektronika.
Seperti dijelaskan sebelumnya bahwa resistor berfungsi untuk menahan arus listrik sehingga setiap resistor memiliki nilai tahanan (resistansi) tertentu. Satuan besarnya nilai tahanan suatu resistor adalah Ohm (Ω). Ohm diambil dari seseorang bernama Georg Simon Ohm yang berkebangsaan Jerman, dimana dia adalah fisikawan penemu hubungan antara arus, tegangan dan tahanan pada suatu rangkaian listrik yang kemudian dikenal sebagai hukum Ohm.

Simbol Resistor

Simbol resistor pada suatu rangkaian elektronika pada umumnya dibagi menjadi dua jenis yaitu simbol Amerika dan simbol Eropa, untuk lebih jelasnya dapat dilihat pada gambar berikut.
resistor-simbol
Simbol Eropa ditunjukkan oleh R1 sedangkan R2 merupakan simbol Amerika. Kedua simbol tersebut bukan merupakan bentuk asli resistor tetapi simbol tersebut digunakan untuk menggambarkan resistor pada rangkaian elektronika.

Kode Resistor

Nilai tahanan pada suatu resistor ditampilkan pada badan resistor dan berupa kode, pada umumnya kode tersebut terbagi atas dua macam yaitu kode warna dan kode angka. Kode warna ini berbentuk seperti cincin yang melingkari badan resistor, untuk lebih jelasnya perhatikan gambar berikut.
kode-warna
Pada cincin 1 (warna hitam) merupakan digit pertama, cincin 2 (warna coklat) merupakan digit kedua, cincin 3 (warna merah) merupakan faktor pengali, dan cincin 4 (warna emas) merupakan toleransi. Setiap warna pada cincin memiliki nilai yang berbeda, untuk mengetahui nilai–nilai setiap warna tersebut perhatikan tabel berikut ini.
tabel-kode-warna

Contoh

  • Cincin 1 (coklat) = digit pertama / nilai = 1
  • Cincin 2 (ungu) = digit kedua / nilai = 7
  • Cincin 3 (merah) = faktor pengali = x 102Ω
  • Cincin 4 (emas) = toleransi = ± 5%
Jadi nilai resistor tersebut adalah:
  • = 17 x 100Ω dengan toleransi ± 5%
  • = 1700Ω dengan toleransi ± 5%
Nilai toleransi pada resistor merupakan kualitas dari resistor itu sendiri, walaupun resistor memiliki nilai tahanan yang tetap, tetapi pada kenyataannya nilai tahanan ini dapat berubah jika terpengaruh oleh faktor eksternal misalnya adalah suhu (temperatur). Besarnya perubahan terhadap suhu tersebut tergantung dari nilai toleransi yang tertera pada cincin ke empat pada badan resistor.
Contoh: dari hasil perhitungan nilai tahanan tersebut diatas diperoleh hasil 1700Ω dengan toleransi ± 5%, maka rentang nilai minimum dan maksimum resistor tersebut adalah:

Rentang nilai minimum dan maksimum resistor

  • 1700Ω x 5% = 85Ω
  • Nilai minimum = 1700Ω - 85Ω = 1615Ω
  • Nilai maksimum = 1700Ω + 85Ω = 1785Ω
Jadi rentang nilai tahanan dari resistor tersebut jika terjadi perubahan suhu adalah 1615Ω-1785Ω. Semakin kecil nilai toleransi maka semakin kecil pula rentang-nya perubahan nilai tahanan suatu resistor, atau dengan kata lain semakin kecil nilai toleransi semakin baik pula kualitas resistor tersebut. Untuk kode angka cara pembacaannya hampir sama sama dengan kode warna hanya tampilannya langsung berupa angka.

Contoh

  • Suatu resistor di badannya terdapat kode angka 471.
  • Maka 4 merupakan digit pertama, 7 merupakan digit kedua, dan 1 merupakan faktor pengali.
  • Sehingga nilai resistor tersebut 47 x 101Ω = 470Ω.
Untuk mempermudah perhitungan dan pembacaan kode warna resistor, unduh Kode Warna Resistor Kalkulator dalam format spreadsheet Excel

Disipasi Panas Pada resistor

Jika suatu arus listrik yang melewati resistor meningkat, maka akan dihasilkan panas dan jika arus tersebut terus meningkat hingga melewati batas maksimum maka resistor akan rusak. Untuk mencegah hal tersebut, selain memiliki nilai tahanan dan toleransi, resistor juga memiliki nilai disipasi dalam Watt.
disipasi-resistor
Biasanya nilai disipasi pada resistor adalah 1/16W, 1/8W, 1/4W, 1/2W, 1W, 2W, 5W, dan seterusnya. Nilai disipasi pada resistor berguna agar sebuah resistor dapat bertahan dari panas, pada kondisi arus listrik maksimum yang melewatinya. Semakin besar nilai disipasinya semakin besar ukuran resistor-nya. Untuk menentukan daya yang akan mengalir melalui resistor digunakan rumus berikut ini.
rumus-daya
Dimana:
  • P adalah daya dalam Watt (W)
  • V adalah tegangan dalam Volt (V)
  • I adalah arus listrik dalam Ampere (A)
  • R adalah tahanan resistor dalam Ohm (Ω)
Sebagai contoh, pada rangkaian elektronika dibawah ini diketahui bahwa tegangan sebesar 12V melewati resistor 47Ω, berapa Watt-kah disipasi pada resistor?
perhitungan-disipasi-resistor
P = V2 / R = 122 / 47 = 144 / 47 = 3,1 Watt
Resistor akan terdisipasi panas sebesar 3,1 Watt, jadi hendaknya pada rangkaian tersebut digunakan resistor dengan nilai disipasi diatas 3,1 Watt (misal 5W) untuk menghindari kerusakan pada resistor.

Resistor Nonlinier

Resistor yang sudah dijelaskan sebelumnya merupakan resistor linier atau resistor yang memiliki nilai tahanan yang tetap, walaupun dijelaskan juga sebelumnya bahwa nilai tahanan resistor berubah-ubah terhadap temperatur tetapi perubahan tersebut tidaklah terlalu besar.
Pada resistor nonlinier nilai tahanan-nya dibuat dapat berubah-ubah sesuai kebutuhan, jenis resistor ini antara lain Potensiometer (resistor variabel), Negative Temperature Co-eficient (NTC), Positive Temperature Co-efficient (PTC), dan Light Depending Resistor (LDR).

Potensiometer

Resistor ini memiliki tuas putar atau geser yang berfungsi untuk merubah nilai tahanan-nya. Biasanya potensiomenter digunakan pada tombol pengatur volume, bass, treble, dan equalizer pada perangkat audio seperti amplifier dan mini compo.
gambar-potensiometer
Simbol untuk potensiometer ditunjukkan pada gambar sebelah kiri, sedangkan di sebelah kanan merupakan gambar potensiometer sebenarnya.

NTC dan PTC

Kedua jenis resistor ini merupakan jenis resistor nonlinier yang nilai tahanan-nya tergantung dari temperatur atau suhu. Pada NTC (Negative Temperature Co-efficient) nilai tahanan-nya akan berkurang jika temperaturnya naik, sedangkan PTC (Positive Temperature Co-efficient) nilai tahanan-nya akan bertambah seiring dengan naiknya temperatur.
gambar-ntc-ptc
Courtesy : www.mikroe.com
Pada gambar a. paling sebelah kiri merupakan simbol NTC disebelah kanannya merupakan bentuk-bentuk NTC sebenarnya. Pada gambar b. paling sebelah kiri merupakan simbol dari PTC dan disebelah kanannya merupakan bentuk-bentuk nyata dari PTC. Resistor jenis ini biasa digunakan sebagai sensor suhu pada suatu peralatan elektronika.

LDR

LDR (Light Dependent Resistor) adalah jenis resistor nonlinier yang nilai tahanan-nya berubah-ubah terhadap perubahan cahaya.
gambar-ldr
Pada gambar diatas merupakan contoh bentuk LDR yang sering digunakan pada rangkaian elektronika. Pada rangkaian elektronika LDR biasa digunakan sebagai sensor cahaya.